
Blockchain Interoperability Survey

1 Background

As crypto has gained more users, so too has the number of blockchains increased, numbering in
the hundreds at the time of writing. While this increase has corresponded to a growing number of
users, transactions, and features, it has also resulted in increased fragmentation of capital, users, and
developers across blockchains and ecosystems.

The broad topic of blockchain interoperability is an ongoing area of research. While initial interoper-
ability solutions focused on relatively narrow tasks like bridging assets, as usage increased over time
they broadened in scope to providing cross-chain liquidity. At the time of writing, a growing number
of protocols have launched with the aim of solving the broader problem of generalized message
passing between chains.

This survey will provide a framework for classifying current interoperability protocols, with a
particular focus on generalized message-passing protocols. More broadly, the purpose of this survey
is to explore various protocols with which UXD may integrate as a part of a broader cross-chain
strategy.

1.1 The Interoperability Problem

Blockchains are by design siloed entities, isolated ledgers that record some form of state (UTXO,
accounts & balances, notes & owners, etc). That state is in turn updated according to a set of
deterministic rules to establish consensus among network participants about the validity of state
updates. However, these consensus mechanisms only pertain to the state of an individual blockchain’s
state/ledger; this is because different Layer 1s implement different forms of security and consensus
(e.g. Proof of Work vs Proof of Stake) and store state differently. Akin to cross-border transactions
between disparate nations, if users on one blockchain are to be able to influence the state of another,
there needs to be a translator to facilitate activity.

It is always worth keeping in mind that interoperability can be considered as a subproblem of the
"Oracle Problem", the concept that blockchains cannot pull in or publish data to any external system.
Interoperability is a subproblem in the sense that, rather than solve for arbitrary data reading and
writing (as is the goal of Chainlink), these protocols aim to solve only blockchain to blockchain data
passing and verification. However, as with the Oracle Problem, all such solutions by definition require
interaction with off-chain parties.

Broadly, given a source chain (message sender) and a destination chain (message receiver), a system
for inter-chain communication must perform three basic functions:

1. Listen to the source chain for requests to send information to the destination chain
2. Confirm the validity of the message being sent and agree with other network participants on

its contents
3. Relay said information to the destination chain in a form that can be read by the destination

chain

The chosen implementation of these three functions gives rise to the specific characteristics of
the cross-chain protocol, including generalizability, adaptability, trust assumptions, security, speed,
capital efficiency, liveness backup, and actor permissioning, among others.

Tech Stack Layer Definition

Base Layer
The infrastructure installed on source and destination chains that ulti-
mately stores the result of read/write requests in the form of state and
cross-chain messages

Authentication Layer Protocol-level logic that verifies the validity of messages from other
consensus environments

Transport Layer Logic that defines how messages are routed, sent, and delivered between
blockchains

Interface Layer Message format and interpretation

We propose to use these factors, summarized in the table below, as the basis for evaluating and
comparing cross-chain protocols.

Criterion Definition

Generalizability The ability of the cross-chain protocol to handle generalized message
passing and contract calls

Adaptability The ease with which a cross-chain protocol can be integrated with new
blockchain types

Trust Assumption
Either (i) trust-minimized, meaning no additional trust assumptions
beyond the connected chains are introduced; or (ii) trusted, requiring
some level of trust on off-chain entities

Security The incentives and guarantees of relevant actors in the system to ensure
ultimate preservation of funds and/or correctness of messages passed

Speed The speed with which the cross-chain protocol is able to process and
finalize requests

Capital Efficiency The amount of capital that must be locked up in order for the cross-chain
protocol to maintain its other essential properties

Liveness Backup The ability for the cross-chain protocol to provide alternative options in
the case of simple liveness failures

Actor Permissioning The permissioning requirements of the various actors in the cross-chain
protocol; related to but distinct from Trust Assumption

At the end of the day, most of the above properties can be derived from logical implications of
the structure of the "Cross-Chain Operators", i.e. the parties that actually "control" the cross-chain
protocol. These commonly take the form of multisig committees, decentralized validator sets,
decentralized oracle sets, or light clients among others.

In evaluating the technical stack of each cross-chain protocol, we borrow from Axelar and define the
Base Layer, Authentication Layer, Transport Layer, and Interface Layer.

Note that not all cross-chain protocols need have all of the above layers. Some, such as LayerZero,
are best understood as modules with the stack that are ambivalent towards the specific implementation
of the rest. With these broad classifications and evaluation criteria in mind, the next section provides
an overview of the current interoperability landscape.

1.2 Generalizability

Blockchain interoperability protocols vary in their specificity and flexibility; one may therefore
consider a hierarchy of cross-chain protocols from least to most flexible. On the most specialized end

2

https://axelar.network/axelar_whitepaper.pdf

of the spectrum, asset-specific bridges transfer fully-collateralized wrapped assets from one chain
to another. Such bridges are relatively simple to implement. However, they often sacrifice security
when compared to more general protocols and but often require separate implementations on each
connected chain. Generally these protocols bridge the most disparate blockchains to each other (such
as BTC to ETH or ETH to SOL).

More general are application-specific protocols which aim to perform a specific functionality across a
range of assets and chains. Members of this category include AnySwap and THORchain, which are
designed for generalized inter-chain swaps.

Most flexible are generalized message passing protocols. These protocols aim to support arbitrary
data transfers between connected chains. Recently, several previously application-specific protocols
including Synapse and AnySwap have announced expansions in this area. Due to their structure as
networks of nodes or validators with endpoints on connected chains, protocols of this type typically
benefit from network effects as they scale. Within this category, protocols take different approaches to
navigate tradeoffs between security, speed, flexibility, decentralization and scope. IBC, for example,
is limited to chains with finality guarantees. Other protocols such as Axelar and LayerZero aim to
support interoperability with a broader range of chains. These protocols will be explored in more
detail using the framework in the previous section.

2 Security Mechanisms

Below we describe several common categories of such approaches. We note that these categories
are simplifications. Within each category protocols exhibit significant variation in parameters and
implementation, correspondingly large variation in security and technological properties.

Further, we note that even if the underlying messaging protocol is secure, smart contract bugs can still
pose large risks. Indeed, several recent exploits such as the Nomad and Wormhole hacks occurred as
a result of flaws in the smart contract endpoints rather than an attack on the underlying consensus
mechanism. Moreover, the sheer economic activity that occurs in many bridges makes them a prime
target for nefarious actors.

2.1 Light Clients with State Verification

This category consists of protocols which verify the state transitions of the source chain on the
destination chain. Commonly, this is accomplished by providing a validity proof such as a ZK-proof
alongside transaction data. Another approach employs fraud proof systems to dispute the validity of
the state. Note that these bridges tend to be "trust-minimized" and are all currently implemented as
optimistic rollups.

2.2 Clients with Consensus Verification

Protocols of this type do not attempt to prove or dispute the validity of the state directly1. Instead,
these interoperability protocols accept messages as valid if consensus is reached on the source chain
and the destination chain is able to verify this consensus. This may involve verifying the signatures
of the most recent validator committee, or checking the state of the longest chain, for example.

One example of this category is Cosmos’ IBC, which utilizes light clients to directly verify the
signatures of other integrated Cosmos chains. Because protocols rely on validator consensus rather
than fraud or validity proofs directly, they remain vulnerable to any attacks which compromise
validator consensus on the source chain. Many members of this type are vulnerable to hard forks,
although some consensus algorithms such as Tendermint, which provides instant finality, aim to limit
this risk.

Members of these first two categories generally have strong security, inheriting guarantees from
the source chain. Furthermore, protocols of this type tend to be capital-efficient (do not depend on
economic security) and allow for flexibility in message passing. However, these types of approaches
can also be difficult to scale. This is because they require implementation of new smart contracts on

1This is generally an incredibly complex problem as the chains need to directly understand each other’s VMs
or ZK proving systems.

3

the source and destination chains and specific implementations for each consensus pairing. The need
to rewrite contracts depending on the consensus mechanism employed further limits the adaptability
of these approaches.

2.3 Optimistic External Validation

In contrast to the previous approaches mentioned, members of this category employ external actors to
ensure security. In a manner similar to the functioning of optimistic rollups, these protocols have
some "watcher" actor that checks the validity of messages and submits a fraud proof within a certain
challenge window period (usually around 30 minutes).

Although this gives a nice 1-of-n honest minority assumption (as only one watcher needs to submit a
fraud proof), proponents of this model generally do not clarify that really one watcher needs to be
honest and online during the challenge window . Given that these windows are relatively short, it
remains to be seen how secure this model may be in practice. Of course, larger sets of watchers and
longer challenge windows increase protocol security, though the latter at the expense of latency. For
reference, Nomad, the current foremost optimistic messaging protocol employs a 30 minute challenge
window.

2.4 External Validator Set with Consensus

This category is the broadest and contains the majority of current bridge and interoperability protocols.
Protocols of this type rely on a set of external actors outside the source and destination chain to
ensure security and verify transaction validity.

There are a variety of approaches within this category, from intermediate chains (Axelar) to sets of
off-chain actors (Multichain, Synapse, LayerZero), to external validators from other chains which
also validate messages (Wormhole). External actors establish consensus through methods including
multisigs and threshold signature schemes.

Members of this category may also employ economic incentives to increase security. Two common
forms of this are bonding and insurance. With bonding, validators must stake collateral of some kind,
and forfeit this collateral upon proof of misbehavior. Generally this collateral is burned. This is rather
odd, upon second thought, as this same collateral could be used to reimburse users who suffer losses
as a result of this misbehavior. In the case of insurance, collateral is slashed to reimburse users in the
case of lost funds.

It is quite difficult to understand the true economic benefit to attacking a cross-chain protocol, but a
reasonable framework is to use "Max Attackable Value" or "MAV", which UXD Protocol defines as:

MAV = max
t

(Value that can be stolen at time t)

MAV is lower for protocols that only handle flows, i.e. cross-chain messages and swaps that do not
require idle liquidity within the protocol, while MAV is higher for protocols that have large stocks
of capital. In particular, the size of MAV influences the size of capital that must be held/bonded by
validators in order to maintain economic security. We therefore take MAV/total bonded capital as a
strong heuristic for the economic security of the chain.

We also note that in the case of general message-passing protocols without locked assets, there may
still be economic incentives for attacks to occur depending on the content of the messages being sent
and the counterparties/applications with which they interact on each chain. These can be difficult to
quantify due to the complexity of the systems involved. Determining the necessary level of capital to
be held to disincentivize bad behavior from off-chain actors is thus not straightforward.

The type of collateral required here also affects the security of the system; protocols using their own
tokens as collateral are vulnerable to death spirals if token value plummets. Additionally, if the
collateral asset differs from the asset being sent, further vulnerabilities may arise via attacks on price
oracles linking the two. We also note that while these methods improve security, they decrease capital
efficiency as ever-larger collateral values are required as message throughput increases.

Although members of this category vary in their security depending on the validation mechanism
employed, they are often generalizable, easily scalable, and have low latency.

4

2.5 Locally Verified External Validator Set

Finally, we wish to note a special case of external validator sets, e.g. locally verified protocols. In
these protocols, only the parties involved in a given transaction need to verify the transaction. This is
in contrast to previous types, which generally require consensus from an entire external validator set.

This setup introduces further assumptions about the two parties involved2. Examples include Connext
and Hop, and these protocols are commonly referred to as "Liquidity Networks", since they can be
thought of as "over-the-counter" deals with parties such as market makers.

3 Current Protocols

Here, we describe and compare several prominent protocols for blockchain interoperability.

3.1 Abacus

Abacus is an inter-chain messaging protocol under development which relies on an external delegated
PoS validator set. Abacus provides a simple on-chain API to send and receive inter-chain messages.
The protocol relies on two simple smart contracts, "Outbox" and "Inbox", which then call relatively
simple dispatch() and handle() functions. In particular, there is an outbox contract on every Abacus-
supported chain, which stores a sparse Merkle tree of messages. There are n − 1 Inboxes on every
Abacus-supported chain, one for each other chain supported. Messages are delivered via relayers to
Inboxes by providing Merkle proofs against a signed Merkle root for the respective Outbox contract.
The relayer processing function simple takes as inputs the signed Merkle root, the message, and a
Merkle proof, and then sends the message to the recipient.

Figure 1: Overview of the Abacus messaging protocol

Regarding security, applications can also specify an external validator set of their own, with consensus
from both validator sets required for transactions to be sent. This addition results in increased security
should the native validator set be compromised, but also introduces additional liveness assumptions
since the native validator set needs to sign off on transactions. Moreover, each Abacus-supported

2Namely, their economic incentives are either (a) adversarial and net-zero, meaning they cannot collude
to take funds from the broader protocol as it would not make economic sense to do so or (b) isolated to their
transaction, meaning there is no possible way to interact with the funds in the greater protocol.

5

chain requires its own validator set, which may fragment security, as well as a constant updating
procedure to understand the structure of the validator sets on all other chains.

Validators are required to stake ABC tokens, and users may delegate said tokens, though both require
a 21-day unbonding period. Stakers are rewarded with ABC token inflation, and are slashed if they
attempt to censor messages (i.e. validator signs anything other than a valid Outbox Merkle root).
Anyone may present evidence of a false message (referred to as "Watchtowers"). Anyone will be able
to operate a validator, relayer, or watchtower.

In contrast to other protocols, rather than signing individual messages, validators sign checkpoints,
which are just the Merkle roots corresponding to all messages from all applications of the connected
chain.

3.2 Axelar

Axelar is a generalized message passing protocol which relies on a decentralized set of permissionless
network validators using delegated PoS. Although the protocol claims this will support any-to-any
communication, regardless of consensus mechanism or message payload, currently only EVM and
IBC chains are supported. At the time of writing3, Axelar is connected to 23 chains. There are
currently 48 validators, with a total of $97.31M in TVL.

Validators run the cross-chain gateway protocol, which is a multi-party cryptography protocol (via
threshold signature accounts on each L1) that sits on top of standard L1s, and are able to read/write
messages and initiate contract calls. Essentially "gateway" contracts sit on every L1 and are monitored
for incoming transactions which are read by the validators before being validated and written to the
destination chain’s gateway contract.

The on-chain state consists of cross-chain transactions and addresses on the source and destination
chains. One limitation of the Axelar construct is that the destination contract address must implement
the IAxelarExecutable interface in order to call the _execute() function. Arbitrary logic may
be defined within this _execute() function.

Gateway-gateway processing takes about 120 seconds in the current implementation. Developers
can solve for things like cross-chain atomicity by implementing additional features like nonced
cross-chain execution and send-ack patterns to synchronize states across contracts. As shown in
Figure 2, this ultimately allows for a simple hub-spoke model with central dApp logic on an optimized
chain and satellite contracts elsewhere.

Validators choose which chains to support but must explicitly run node software on source and
destination chains. Validators verify all cross-chain activity by observing the state of the source
chain and voting to establish transaction confirmations between the source and destination chains and
Axelar. Validators stake AXL tokens and receive inflationary rewards and transaction fees (though
payments will not need to be explicitly in AXL). In the case of misbehavior (loss of liveness, double
signing, etc.), validators’ collateral can be slashed.

Axelar also relies on a set of off-chain relayers to perform less sensitive tasks such as coordinating
validators to begin votes or monitoring on-chain addresses. Relayer architecture is flexible and
permissionless.

3For current metrics, please refer to the dashboard here.

6

https://axelarscan.io

Figure 2: The Axelar Hub-Spoke Model

Figure 3: Overview of the Axelar messaging protocol

7

3.3 Chainlink CCIP

Chainlink has recently announced a decentralized protocol for generalized cross-chain messaging
called CCIP. CCIP relies on an upcoming set of efficiency upgrades to Chainlink’s off-chain reporting
protocol (OCR). This set of upgrades, termed OCR 2.0, will allow for the network to run an increased
number of nodes.

Figure 4: Overview of Chainlink’s CCIP messaging protocol

Figure 4 contains an overview of CCIP’s high-level structure. Under CCIP, messages are routed
from smart contracts on source/destination chains to Chainlink’s node network. From available
documentation, messaging is to work similarly to the current Chainlink oracle transmission model.
In this model, Chainlink employs oracle and external adapter contracts to read and transmit data to
the node network. Nodes are permissioned, are required to stake LINK tokens, and receive shares of
fees from relaying executed messages.

In addition to the OCR consensus mechanisms mentioned previously, CCIP plans to include a
secondary security layer which it terms the "Anti-Fraud Network" (AFN). This AFN is essentially a
set of decentralized oracle node committees which monitor the CCIP network for malicious activity
and submit heartbeat messages when the system is operating normally. Detection of attacks or pauses
in heartbeats result in an emergency shutdown of the relevant cross-chain services.

Although the AFN will initially consist of Chainlink nodes, the protocol will eventually allow for
dApps satisfying certain staking criteria to operate nodes of their own. Because the protocol relies on
oracles for consensus as opposed to proofs originating from the source chain, protocol security is
dependent on the security of the underlying oracle and AFN. As such, the protocol remains vulnerable
to attacks on either of these two sets or collusion between them.

3.4 IBC

The Inter-Blockchain Communication protocol (IBC) is an open-source interoperability protocol
which provides generalized messaging between blockchains with instant finality. Notably, IBC is the
protocol employed by the Cosmos ecosystem.

The IBC protocol consists of two primary layers. At the lowest level is the transport layer, which
establishes secure inter-chain connections and authenticates data packets between blockchains. On
top of this layer, the application layer specifies the interpretation and packing of data packets and is
defined by protocols.

Figure 5 contains an overview of the message life cycle under IBC. Within the transport layer,
authentication and verification is handled by light clients connected to validators on the consensus
layers of connected chains. When a module on the source chain sends a data packet to the destination

8

Figure 5: Overview of the IBC messaging protocol

chain, it first stores an on-chain commitment proof linked to the packet information. Light clients
maintain a connection handshake between the connected chains and transmit proofs to the destination
chain. Off-chain relayers, which have access to full nodes on both chains, transmit message data
between the IBC modules on each chain. Once the destination chain verifies the source-chain proof,
light clients store message receipt data and send an acknowledgement to the source chain. Finally,
the destination chain executes logic based on the transmitted message.

Because IBC relies on light clients that verify consensus directly, it is among the most "trustless"
of current interoperability protocols. These security guarantees come at the expense of flexibility;
connected chains must run light clients at the base layer and have instant finality in order to be
compatible. Because of instant finality, attacks compromising liveness do not compromise the
security of IBC. However, if relayers fail or are attacked, IBC generally requires social coordination
between relayers to reestablish liveness.

3.5 LayerZero

In contrast to previously mentioned protocols, LayerZero relies upon two types of off-chain entities
called "Relayers" and "Oracles" for security. In effect, the two function similarly to a 2-of-2 multisig.
While Relayers pass message information and transaction proofs between chains, Oracles pass block
headers between source and destination chains, to guarantee the agreement between Oracles and
Relayers. Oracles and Relayers are required to be independent for the described security guarantees,
but specific implementations of either are left as an exercise to the user; theoretically, users and
protocols could each provide their own implementations.

Both Relayers and Oracles receive a share of the transaction fees paid by the user on the origin chain.
Currently Oracles are centralized and run by firms including FTX, Sequoia and Polygon. LayerZero
has announced intent to use Chainlink as the default Oracle in the future.

For clarity, LayerZero is best understood as a specific implementation of a "Base Layer" from the
Tech Stack description in Section 1. This is because LayerZero allows the user to specify how the
Relayer/Oracle relationships may function (though default suggestions may of course be provided),
as well as the particular form of messages to be sent. Stargate, the cross-chain token transfer protocol,
is an application built using LayerZero as its lower-level messaging protocol.

The interface for LayerZero is a lightweight, on-chain client referred to as the LayerZero Endpoint.
One Endpoint resides on each supported chain. Endpoints in turn consist of three modules: a

9

Figure 6: Overview of the LayerZero messaging protocol

communicator, validator, and network module. To allow for increased flexibility, endpoints can
be extended via linked smart contracts containing chain-specific communication protocols called
"Libraries". Although Libraries are immutable once implemented, the protocol allows for flexibility
by permitting applications to add new Libraries and specify which Library to use.

While LayerZero supports generalized message passing, as noted above it does not specify the Inter-
face (form of message) that must be passed. Applications interact with LayerZero by implementing
methods corresponding to send and receive functionality.

Though the LayerZero whitepaper was initially published in May 2021, the ecosystem is still
developing. At the time of writing, LayerZero connects to 7 EVM chains, with stated plans to expand
to others including Cosmos and Solana. On the application layer, the LayerZero dAPP ecosystem
currently consists of the Stargate app, a cross-chain routing and liquidity protocol with $468M in
TVL. We were unable to find further information on the current number and operators of Oracle and
Relayer nodes, since notably these seem to not be terribly public.

In general, LayerZero’s biggest critique is around the implementation of the Oracle and Relayer
parties, as allowing for "general" implementation is in some sense saying that a default implementation
is not obvious. Further, it is not clear how to prevent forms of collusion between these parties.

3.6 Multichain

Formerly known as AnySwap, Multichain launched in July 2020 as an asset bridge and router.
Multichain relies on an off-chain MPC network for security, each node of which independently
verifies the status of the original chain and uses a threshold consensus algorithm. It does not
appear that this validator set is permissionless. Multichain offers traditional lock-burn bridging, with
the associated smart contract and validator risks, as well as a liquidity router using anyTokens as
intermediary tokens (such as anyUSDC), and a cross-chain contract calling service, anyCall.

The message-passing protocol underlying anySwap, anyCall, allows for cross-chain message passing.
Messages are sent and received by endpoints on connected chains, which transmit via the MPC
network. As noted above, Multichain uses an MPC TSS scheme of validator nodes that watch the
state of the source chain. Similar to Axelar, the anyCall endpoints contain an anyExec() function
that implements the instructions sent through the anyCall protocol. The workflow is as follows:
someone initiates a call to a sender contract on the source chain =⇒ anyCall(source chain) is
called =⇒ MPC Network sees anyCall(source chain) =⇒ anyExec(destination chain)

10

=⇒ anyCall(executor) =⇒ anyExec(destination chain). The protocol allows for gas
fees to be paid on either the source or destination chains.

For example, the first integration of anyCall was with Curve, in which Curve’s gauge mechanism is
generalized by allowing cross-chain CRV rewards deployment. For example, it allows users to claim
wrapped CRV on Fantom via a rewards redemption request that is processed on Ethereum.

Intuitively the (anticipated) functionality of anyCall and Axelar seem quite similar, with the key
differences being (i) Multichain not requiring staking (more capital efficient, but relies on reputation of
MPC nodes) and (ii) Axelar having a more diverse, permissionless validator set (less capital-efficient
and requires economic security).

The Multichain SMPC network currently4 consists of 23 nodes connected to 63 chains, both EVM
and non-EVM, and is used by dApps including Curve and Hundred Finance. At the time of writing,
the network has $2.51B of TVL, with a daily average volume of $54M in assets.

3.7 Nomad

Unlike the aforementioned protocols, Nomad operates an optimistic model instead of a consensus
model. This functions similarly to how optimistic rollups operate today. The Nomad protocol consists
of off-chain relayers and on-chain endpoint contracts for sending and queuing messages.

Figure 7 contains a high-level summary of the Nomad messaging protocol’s structure. Messages
are sent from the origin chain via a Home contract, where they are put into a queue. Similar to
Abacus, every chain must implement a Home contract, and the ultimate source of truth with messages
to be sent is stored in a Merkle tree. Replica contracts for n − 1 connected chains, correspond to
the Home contracts on the other n − 1 connected chains. and hold knowledge of the current state
root and the identity of the Updater. Each Home contract acts as a broadcast channel, emitting a
general broadcasted event, meaning that all k Replica contracts on other chains referencing said
Home contract can receive updates at once5. Currently, the Updater can only be set via a function
that belongs to Nomad governance, but we suspect that this will be done in a more trustless way in
the future.

On the security model, messages signed by updaters can be rejected by any Watcher that submits a
fraud proof during a 30-minute window. This setup gives a nice 1-of-n honest minority assumption,
as only one watcher needs to submit a fraud proof. However, proponents of this model generally do
not clarify that really one watcher needs to be honest and online during the challenge window period.
Given that these windows are relatively short, it remains to be seen how secure this model may be in
practice.

We also note that the calculation of the optimistic window depends on the blockchains involved and
theoretically may need to be more individually tailored for different (Home, Replica) pairs due to
differences in block and confirmation times. If a malicious actor can block the submission of a fraud
proof to the Home chain for longer than this window, their message may execute on the Replica
chain.

Currently, watchers are permissioned and centralized since the current system lacks mechanisms to
prevent false challenges. Fraud occurs when an Updater signs a malicious Merkle root update with
an inserted message. This fraud can occur in two distinct ways. First, the Updater may commits two
new roots with the same previous root, known as double signing. Second, the Updater may commit
an invalid update.

Although the former is easy to detect, the latter requires referencing the queue of messages in the
Home contract and noticing that the root is not contained in the proposed and calculated queue of
roots. However, while this sort of fraud can be proven in the Home contract (the source of truth for
message origination), it cannot be directly proven for the Replica contracts to be halted. Nomad
therefore relies on a permissioned set of Watchers on the Replica chain to pause message receipt.
Once fraud is detected, the system must be restarted from a failed state. For economic security, the
slashing of an Updater’s stake must thus be sufficient to protect against ongoing griefing.

4For the curent status of the Multichain SMPC network, please refer to the dashboard here.
5There is potential for this broadcasting to be used for more general one-to-many blockchain communication

such as notification systems.

11

https://anyswap.net/dashboard

Figure 7: Overview of the Nomad messaging protocol

In August 2022 there Nomad suffered a hack of $190M due to a smart contract bug which allowed
receiving contracts to bypass the message verification mechanism.

3.8 Synapse

Synapse is a cross-chain AMM and bridge protocol. While initially launched with a focus on asset
bridging, in July 2022 the protocol announced a shift towards general message passing. As part of
this transition, Synapse plans to launch Synapse Chain, an optimistic rollup settling on ETH with
delegated PoS. However, the information on implementation specifics is still sparse. Synapse is
unique in the sense that the SYN token is meant to also run the standalone blockchain, which is
meant to accrue economic value in itself as an optimistic rollup. The specific rollup implementation
is unclear, though from initial materials it seems likely that design choices will be similar to Arbitrum
and Optimism, along with an initially centralized sequencer.

To transmit and verify transactions between chains, Synapse plans to rely on four on-chain actors:

1. Notaries - sign Merkle roots on connected chains and bond SYN to attestations

2. Broadcasters - forward updates between contracts

3. Guards - observe cross-chain messages and submit fraud proofs

4. Executors - post final transactions after the latency window

Note this setup functions fundamentally similarly to Nomad’s implementation. First, a user sends
a message on the source chain to a router contract and a centralized permissioned Notary signs an
attestation of the updated Merkle root. Following this, the message is passed across to the Router
contract on the destination chain, although it is unclear if this is one-to-many broadcasting. Guards
check for fraud, and if none is detected the message is executed by an Executor on the destination
chain.

Although some of the more nuanced points of optimistic verification for cross-chain messaging
remain to be seen, it is clear that this security model is a significant improvement over the current
Synapse multisig model.

12

Figure 8: Overview of the anticipated Synapse tech stack

The Synapse bridge application is currently6 connected to 16 chains and has a TVL of $206M with a
daily volume of $8.41M. At the time of writing, the broader messaging protocol and linked chain has
yet to be released.

3.9 Wormhole

Wormhole is a generic messaging protocol relying on an external validation set for security. The
Wormhole network consists of 19 oracles, termed "Guardians", which correspond to permissioned
PoS validators running full nodes of each connected chain. Developers deploy "xDapp" contracts
on their source chain, which receive transactions from the end user. These contracts then interact
with "Core" contracts that contain the source-chain-deployed version of bridging and generalized
message passing. However, the Relay contracts which handle generalized message passing are still
in development. Currently, the Wormhole ecosystem contains an NFT bridge and the Portal token
bridge which at the time of writing contained $493.12 TVL. It includes support for Solana, Terra,
Ethereum, and Binance Smart Chain.

Figure 9 contains an overview of Wormhole’s structure. Guardians are responsible for observing
endpoints on all connected bridges and verifying transactions. Guardians are given equal weighting,
are chosen in a centralized manner by the protocol, and are not required to post bond. Transactions
are confirmed via a multi-signature scheme with a 2/3 threshold at the time of writing.

Again, Wormhole today currently operates at a 13-of-19 multisig on transaction verification and
relies on the reputation of the parties running the guardians, such as Figment, FTX, and Staked.
This trade-off has its benefits, however, as Wormhole is able to quickly integrate with different
consensus-type chains because the fundamental tech to be used is quite simple (t-Schnorr signatures).
Relayers do not need to be factored into the security model; instead they must just be capable of
uploading messages to the blockchain.

In addition to Guardians, Wormhole will rely on a series of untrusted, publicly-run relayers to transmit
messages from Guardians to the contracts on the destination chain. At the time of writing, these
"Generic Relayers" are still under development.

In February 2022, Wormhole suffered a $325M hack due to a smart-contract bug in the Solana
endpoint contract.

6For the latest statistics on the Synapse bridge network please refer to the Synapse dashboard here.

13

https://analytics.synapseprotocol.com/

Figure 9: Overview of the Wormhole messaging protocol

4 Conclusion

Based on the above, UXD has generally adopted the framework that most of the cross-chain messaging
protocols are fundamentally similar on a Base Layer level, in that they all generally function as
deploy contracts on chain X and Y, contracts accept messages, someone validates/invalidates and
relay messages to sister contract on chain Y, which then executes some instruction. We see the most
meaningful differences at the authentication layer, and think it is still an open question about how
to optimize for efficiency and security. For example, LayerZero can be thought of as a Base Layer
and Transport Layer that is Authentication Layer agnostic, in the sense that any parties or sets of
parties can be plugged into the Oracle and Relayer roles. For example, a decentralized network of
PoS validators could function themselves as a Relayer in the LayerZero network. Other protocols
like Axelar and Wormhole choose dPoS and Multi-Sig Authentication Layers, respectively. One
thing to note that is not addressed much in any of the documentation of the respective cross-chain
protocols is latency. Note that an absolute minimum amount of latency exists because the theoretical
minimum is 1 block confirmation on chain X => message pass => 1 block confirmation on chain
Y. Therefore, minimum latency is required to be someone on the order of several seconds to several
minutes on most chains. This is important when evaluating something like the Optimistic solution
offered by Nomad and Synapse, where there’s a minimum latency of 30 minutes. However, given the
nature of the protocol in a cross-chain world likely would not require frequent interaction (primarily
mint/redeem or borrow/lend), a 30 minute latency in the Optimistic model may be acceptable. We
will continue to explore these options as we develop our cross-chain strategy.

For UXD’s purposes, we believe that either a LayerZero model in which we are able to set our own
parameters (oracle/relayer, min block confirms, etc) or a more "out-of-the-box" solution like Axelar
or Nomad may be suitable.

14

5 Disclaimer and Risks

All decentralized stablecoins carry risks related to their usage and price stability. Please review UXD
Protocol’s Risks section in the docs for more information on potential risks. https://docs.uxd.
fi/uxdprotocol/overview/risks

The views expressed herein are for informational purposes only and, unless otherwise stated, reflect
only the subjective views of the applicable speaker, which are subject to change. Nothing herein
constitutes investment, legal, or tax advice or recommendations. This material does not constitute or
form part of an offer to issue or sell, or of a solicitation of an offer to subscribe or buy, any securities
or other financial instruments, nor does it constitute a financial promotion, investment advice or an
inducement or incitement to participate in any produce, offering or investment. This material should
not be relied upon as a basis for making an investment decision. It should not be assumed that any
investment in the asset class described herein, or any company or asset described herein, will be
profitable and there can be no assurance that future events and market factors would lead to results
similar to the results discussed in this article. Any projections, estimates, forecasts, targets, prospects
and/or opinions expressed in these materials are subject to change without notice and may differ or
be contrary to opinions expressed by others. No representation or warranty, express or implied, is
made as to the accuracy or completeness of the information contained herein. Finally, UXD Protocol
has not formed any opinions on the above based on any relationships with the relevant protocols and
conclusions therein rely only on our subjective opinions.

15

https://docs.uxd.fi/uxdprotocol/overview/risks
https://docs.uxd.fi/uxdprotocol/overview/risks

	Background
	The Interoperability Problem
	Generalizability

	Security Mechanisms
	Light Clients with State Verification
	Clients with Consensus Verification
	Optimistic External Validation
	External Validator Set with Consensus
	Locally Verified External Validator Set

	Current Protocols
	Abacus
	Axelar
	Chainlink CCIP
	IBC
	LayerZero
	Multichain
	Nomad
	Synapse
	Wormhole

	Conclusion
	Disclaimer and Risks

